Robust control of the cardiovascular system requires two general brain pathways: feedforward, i.e. central commands (efferent) and sensory feedback (afferent), i.e. reflex control. The baroreceptor reflex (BRx) is essential for circulatory homeostasis in autonomic control of cardiovascular function.

Clinical significance of the baroreflex (BRx) is well known:
- Heart failure is a disease categorized by sympathetic hyperactivity, parasympathetic withdrawal, and impaired BRx control of sympathetic activation. (Shen & Zipes, 2015)
- BRx dysfunction is implicated in neurally mediated syncope, dysrhythmias and orthostatic hypotension. (Costil, 1994; Armour, 2004; Low, 2015)
- Impaired BRx sensitivity (BRS) and increased heart rate variability (HRV) suggest an increased risk of sudden cardiac death. (Monahan, 2007)

Many clinically relevant questions remain concerning sex (gender) and sympathovagal balance:
- Major differences in cardiovascular disease exist between men and women. (Regitz-Zagrosek and Kararigas, 2017)
- Parasympathetic markers for HRV and BRx differ between males and females. (Seave, 2001; Christou, 2003)
- Regulation of cardiovascular function differs between men and women. (Huxley, 2007)

The Schild lab was first to experimentally validate:
- An afferent explanation for sexual dimorphism in the baroreflex. (2014)
- Differential distribution of voltage-gated channels in myelinated and unmyelinated baroreceptor afferents extends to gender. (2012)
- Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

The Schild lab utilizes a synergistic combination of in vitro, in situ, and in silico methodologies to study sexual dimorphism in the neural coding of blood pressure dynamics and BRx function.

Regulation of cardiovascular function differs between men and women. (Huxley, 2007)

Sex differences in baroreflex (BRx) function are well documented.
- Hormones likely contribute to this dimorphism, but many functional aspects remain unresolved. Our lab has been investigating a subset of vagal sensory neurons that constitutes nearly 50% of the total population of myelinated aortic baroreceptors (BR) in female rats but less than 2% in male rats. Termed "Ah," this unique phenotype has many of the nonoverlapping electrophysiological properties and chemical sensitivities of both myelinated A-type and unmyelinated C-type BR afferents. We utilize three distinct experimental protocols to determine if Ah-type barosensory afferents underlie, at least in part, the sex-related differences in BRx function.
- Electron microscopy of the aortic depressor nerve (ADN) revealed that female rats have less myelin (P < 0.03) and a smaller fiber cross-sectional area (P < 0.05) per BR fiber than male rats. Termed "Ah," this unique phenotype has many of the nonoverlapping electrophysiological properties and chemical sensitivities of both myelinated A-type and unmyelinated C-type BR afferents. We utilize three distinct experimental protocols to determine if Ah-type barosensory afferents underlie, at least in part, the sex-related differences in BRx function.
- Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)

Electrophysiological and neuroanatomical evidence of sexual dimorphism in baroreceptor neuron function. (2008)