Priority-driven Scheduling of Periodic Tasks (2)

Embedded Real-Time Software
Lecture 6
Lecture Outline

hedulability tests for fixed-priority systems
- Conditions for optimality and schedulability
- General schedulability tests and time demand analysis

practical factors
- Non-preemptable regions
- Self-suspension
- Context switches
- Limited priority levels

Continues from material in lecture 5, with the same assumptions

Priority-driven Scheduling of Periodic Tasks (2)
You will recall:

EDF and LST dynamic priority scheduling optimal:
- Always produce a feasible schedule if one exists – on a single processor, as long as preemption is allowed and jobs do not contend for resources
- Lecture 3 + confirmation last lecture: $U_{\text{EDF}} = 1$

Fixed priority algorithms is non-optimal in general:
- e.g. RM and DM sometimes fail to schedule tasks that can be scheduled using other algorithms
- Proof:

Hence introduced schedulability tests in lecture 5
Optimality of RM and DM Algorithms

Example:
RM and DM are optimal in simply periodic systems
A system of periodic tasks is *simply periodic* if the period of each task is an integer multiple of the period of the other tasks:

\[p_k = n \cdot p_i \]

where \(p_i < p_k \) and \(n \) is a positive integer; for all \(T_i \) and \(T_k \)
True for many real-world systems, e.g. the helicopter flight control system discussed in lecture 1
Optimality of RM and DM Algorithms

Theorem: A system of simply periodic, independent, preemptible tasks with $D_i \geq p_i$ is schedulable on one processor using the RM algorithm if and only if $U \leq 1$

Corollary: The same is true for the DM algorithm

Proof:
A simply periodic system, assume tasks in phase
- Worst case execution time occurs when tasks in phase T_i misses deadline at time t where t is an integer multiple of p_i
- Again, worst case $\Rightarrow D_i = p_i$

Simply periodic $\Rightarrow t$ integer multiple of periods of all higher priority tasks
Total time required to complete jobs with deadline $\leq t$ is $\sum_{k=1}^{t} \frac{e_k}{p_k} = t \cdot U_i$
Only fails when $U_i > 1$
Identified several simple schedulability tests for fixed-priority scheduling:

A system of n independent preemptable periodic tasks with $D_i = p_i$ can be feasibly scheduled on one processor using RM if $U \leq n \times \left(2^{1/n} - 1\right)$

A system of simply periodic independent preemptable tasks with $D_i \geq p_i$ is schedulable on one processor using the RM algorithm iff $U \leq 1$

But: there are algorithms and regions of operation where we don't have a schedulability test and must resort to exhaustive simulation.

Is there a more general schedulability test?

Yes, extend the approach taken for simply periodic system schedulability...
Fixed-priority algorithms are predictable and do not suffer from scheduling anomalies.

The worst case execution time of the system occurs with the worst case execution time of the jobs, unlike dynamic priority algorithms which can exhibit anomalous behavior.

Use this as the basis for a general schedulability test:

Find the critical instant when the system is most loaded, and has its worst response time.

Use time demand analysis to determine if the system is schedulable at that instant.

Prove that, if a fixed-priority system is schedulable at the critical instant, it is always schedulable.
Finding the Critical Instant

A critical instant for a job is the worst-case release time for that job, taking into account all jobs that have higher priority.

i.e. a job released at the same instant as all jobs with higher priority are released, and must wait for all those jobs to complete before it executes.

The response time of a job in T_i released at a critical instant is called the maximum (possible) response time, and is denoted by W_i.

The schedulability test involves checking each task in turn, to verify that it can be scheduled when started at a critical instant. If schedulable at all critical instants, will work at other times.

More work than the test for maximum schedulable utilization, but less than an exhaustive simulation.
Finding the Critical Instant

Critical instant of a task T_i **is a time instant such that:**

If $w_{i,k} \leq D_{i,k}$ for every $J_{i,k}$ in T_i, then the job released at that instant has the maximum response time of any in T_i and $W_i = w_{i,k}$.

- All jobs meet deadlines, but this instant is when the job with the slowest response is started.

Else if there exists $J_{i,k}$ such that $w_{i,k} > D_{i,k}$, then the job released at that instant has response time larger than D.

- If some jobs don’t meet deadlines, this is one of those jobs.

Where $w_{i,k}$ is the response time of the job.

Theorem: In a fixed-priority system where every job completes before the next job in the same task is released, a critical instant occurs when one of its jobs $J_{i,c}$ is released at the same time with a job from every higher-priority task.

Intuitively obvious, but proved in the book

Priority-driven Scheduling of Periodic Tasks (2)
Consider 3 tasks

\(T_1 = (2.0, 0.6), \ T_2 = (2.5, 0.2), \ T_3 = (3, 1.2) \)

Tasks scheduled using rate-monotonic

The response times of jobs in \(T_2 \) are:

\(r_{2,1} = 0.8, \ r_{2,2} = 0.3, \ r_{2,3} = 0.2, \ r_{2,4} = 0.2, \ r_{2,5} = 0.8, \ldots \)

Therefore, the critical instants of \(T_2 \) are \(t = 0 \) and \(t = 10 \)

What are the response times of jobs in \(T_3 \)?
Having determined the critical instants, show that for each job J_{i,c} released at a critical instant, that job and all higher priority tasks complete executing before their relative deadlines. So, the entire system be schedulable...

That is: don’t simulate the entire system, simply show that it has correct characteristics following a critical instant.

This process is called time demand analysis.
Compute the total demand for processor time by a job released at a critical instant of a task, and by all the higher-priority tasks, as a function of time from the critical instant. Check if this demand can be met before the deadline of the job.

Consider one task, \(T_i \), at a time, starting highest priority and working down to lowest priority.

Focus on a job, \(J_i \), in \(T_i \), where the release time, \(t_0 \), of that job is a critical instant of \(T_i \).

At time \(t_0 + t \) for \(t \geq 0 \), the processor time demand \(w_i(t) \) for this job and all higher-priority jobs released in \([t_0, t]\) is:

\[
w_i(t) = e_i + \sum_{k=1}^{i-1} \left[\frac{t}{p_k} \right] e_k \quad \text{for } 0 < t \leq p_i
\]

\(w_i(t) \) = the time-demand function

Execution time of job \(J_i \)

Execution time of higher priority jobs started during this interval
Demand Analysis

Compare the time demand, $w_i(t)$, with the available time, t:

If $w_i(t) \leq t$ for some $t \leq D_i$, the job, J_i, meets its deadline, $t_0 + D_i$.

If $w_i(t) > t$ for all $0 < t \leq D_i$ then the task probably cannot complete its deadline; and the system likely cannot be scheduled using a fixed priority algorithm.

- Note that this is a sufficient condition, but not a necessary condition. Simulation may show that the critical instant never occurs in practice, so the system could be feasible...

Use this method to check that all tasks are schedulable if released at their critical instants; if so conclude the entire system can be scheduled.
Demand Monotonic: $T_1 = (3,1), T_2 = (5,2), T_3 = (10,2)$
$U = 0.933$

The time-demand functions $w_1(t)$, $w_2(t)$, and $w_3(t)$ are not above t at their deadline.

The system can be scheduled.
The time-demand function $w_i(t)$ is a staircase function.

Steps in the time-demand for a task occur at multiples of the period for higher-priority tasks.

The value of $w_i(t) - t$ linearly decreases from a step until the next step.

Our interest is the schedulability of a task, it suffices to check if $w_i(t) \leq t$ at the time instants when a higher-priority job is released.

Our schedulability test becomes:

Compute $w_i(t)$

Check whether $w_i(t) \leq t$ is satisfied at any of the instants $t = j \cdot p_k$ where $k = 1, 2, \ldots, i$

$j = 1, 2, \ldots, \left\lfloor \min(p_i, D_i)/p_k \right\rfloor$
Demand Analysis: Exercise

For the following tasks:
\(T_1 = (3, 1) \), \(T_2 = (5, 1.5) \), \(T_3 = (7, 1.25) \), \(T_4 = (9, 0.5) \)

- Draw the time-demand functions
- Determine if they are RM schedulable

Add one more task
\(T_5 = (10, 1) \)

- Draw the time-demand functions
- Determine if they are RM schedulable

Priority-driven Scheduling of Periodic Tasks (2)
The demand analysis schedulability test is more complex than the schedulable utilization test, but more general. Works for any fixed-priority scheduling algorithm, provided the tasks have short response time (i.e. $p_i < D_i$). Can be extended to tasks with arbitrary deadlines (see book). Only a sufficient test: guarantees that schedulable results are correct, but requires further testing to validate a result of not schedulable.

Alternative approach: simulate the behavior of tasks released at critical instants, up to the largest period of the tasks. Still involves simulation, but less complex than an exhaustive simulation of the system behavior. Worst-case simulation method. Can easily extend the time-demand analysis method for non-preemptive...
Practical Factors

We have assumed that:

- Jobs are preemptable at any time
- Jobs never suspend themselves
- Each job has distinct priority
- The scheduler is event driven and acts immediately

These assumptions are often not valid... how does this affect the system?
Blocking and Priority Inversion

A ready job is *blocked* when it is prevented from executing by a lower-priority job; a *priority inversion* is when a lower-priority job executes while a higher-priority job is blocked.

Nonpreemptibility

Some jobs cannot be pre-empted:
- Critical section over a resource
- Some system calls are non-preemptable
- Disk scheduling

If a job becomes non-preemptable, priority inversions may occur, these may cause a higher priority task to miss its deadline.

When attempting to determine if a task meets all of its deadlines, must consider not only all the tasks that have higher priorities, but also non-preemptable regions of lower-priority tasks.

Add the blocking time in when calculating if a task is schedulable.

Priority-driven Scheduling of Periodic Tasks (2)
Suspension and Context Switches

f-suspension
A job may invoke an external operation (e.g. request an I/O operation), during which time it is suspended. This means the task is no longer strictly periodic... again need to take account self-suspension time when calculating a schedule.

Context Switches
Assume maximum number of context switches K_i for a job in T_i is known; each takes t_{cs} time units. Compensate by setting execution time of each job, $e_{actual} = e_i + 2 T_{cs}$ more if jobs self-suspend, since additional context switches.

Priority-driven Scheduling of Periodic Tasks (2)
of our previous discussion of priority-driven scheduling was driven by events (job release and completion)
Alternatively, can perform priority-driven scheduling at periodic events (timer interrupts) generated by a hardware clock
i.e. tick (or time-based) scheduling
Additional factors to account for in schedulability analysis
The fact that a job is ready to execute will not be noticed and acted upon until the next clock interrupt; this will delay the completion of the job
A ready job that is yet to be noticed by the scheduler must be held somewhere other than the ready job queue, the pending job queue
When the scheduler executes, it moves jobs in the pending queue to the ready queue according to their priorities; once in ready queue, the jobs execute in priority order
Practical Factors

Clear that non-ideal behaviour can affect the schedulability of a system. We've touched on how – more details later in the module.
Summary

We have discussed fixed-priority scheduling of periodic tasks:
- Optimality of RM and DM
- More general schedulability tests and time-demand analysis

Outlined practical factors that affect real-world periodic systems.