Solutions to HW12

Note: These solutions are D. J. Goodman, the authors of our textbook. I have annotated and corrected them as necessary. Text in italics is mine.

Problem 10.10.2 •

Let \(A \) be a nonnegative random variable that is independent of any collection of samples \(X(t_1), \ldots, X(t_k) \) of a wide sense stationary random process \(X(t) \). Is \(Y(t) = A + X(t) \) a wide sense stationary process?

Problem 10.10.2 Solution

To show that \(Y(t) \) is wide-sense stationary we must show that it meets the two requirements of Definition 10.15, namely that its expected value and autocorrelation function must be independent of \(t \). Since \(Y(t) = A + X(t) \), the mean of \(Y(t) \) is

\[
E[Y(t)] = E[A] + E[X(t)] = E[A] + \mu_X
\]

(1)

The autocorrelation of \(Y(t) \) is

\[
R_Y(t, \tau) = E[(A + X(t))(A + X(t + \tau))]
\]

(2)

\[
= E[A^2] + E[A]E[X(t)] + AE[X(t + \tau)] + E[X(t)X(t + \tau)]
\]

(3)

\[
= E[A^2] + 2E[A]\mu_X + R_X(\tau),
\]

(4)

where the last equality is justified by the fact that we are given that \(X(t) \) is wide sense stationary. We see that neither \(E[Y(t)] \) nor \(R_Y(t, \tau) \) depend on \(t \). Thus \(Y(t) \) is a wide sense stationary process.

Problem 10.11.1 •

\(X(t) \) and \(Y(t) \) are independent wide sense stationary processes with expected values \(\mu_X \) and \(\mu_Y \) and autocorrelation functions \(R_X(\tau) \) and \(R_Y(\tau) \) respectively. Let \(W(t) = X(t)Y(t) \).

(a) Find \(\mu_W \) and \(R_W(t, \tau) \) and show that \(W(t) \) is wide sense stationary.

(b) Are \(W(t) \) and \(X(t) \) jointly wide sense stationary?

Problem 10.11.1 Solution

\(a) \) Since \(X(t) \) and \(Y(t) \) are independent processes,

\[
E[W(t)] = E[X(t)Y(t)] = E[X(t)]E[Y(t)] = \mu_X\mu_Y.
\]

(1)

In addition,

\[
R_W(t, \tau) = E[W(t)W(t + \tau)]
\]

(2)

\[
= E[X(t)Y(t)X(t + \tau)Y(t + \tau)]
\]

(3)

\[
= E[X(t)X(t + \tau)]E[Y(t)Y(t + \tau)]
\]

(4)

\[
= R_X(\tau)R_Y(\tau)
\]

(5)

We can conclude that \(W(t) \) is wide sense stationary.
(b) To examine whether \(X(t) \) and \(W(t) \) are jointly wide sense stationary, we calculate
\[
R_{WX}(t, \tau) = E[W(t)X(t+\tau)] = E[X(t)Y(t)X(t+\tau)].
\] (6)

By independence of \(X(t) \) and \(Y(t) \),
\[
R_{WX}(t, \tau) = E[X(t)X(t+\tau)] E[Y(t)] = \mu_Y R_X(\tau).
\] (7)

Since \(W(t) \) and \(X(t) \) are both wide sense stationary and since \(R_{WX}(t, \tau) \) depends only on the time difference \(\tau \), we can conclude from Definition 10.18 that \(W(t) \) and \(X(t) \) are jointly wide sense stationary.

Problem 10.11.2

\(X(t) \) is a wide sense stationary random process. For each process \(X_i(t) \) defined below, determine whether \(X_i(t) \) and \(X(t) \) are jointly wide sense stationary.

(a) \(X_1(t) = X(t+a) \)

(b) \(X_2(t) = X(at) \)

Problem 10.11.2 Solution

To show that \(X(t) \) and \(X_i(t) \) are jointly wide sense stationary, we must first show that \(X_i(t) \) is wide sense stationary and then we must show that the cross correlation \(R_{XX_i}(t, \tau) \) is only a function of the time difference \(\tau \). For each \(X_i(t) \), we have to check whether these facts are implied by the fact that \(X(t) \) is wide sense stationary.

(a) Since \(E[X_1(t)] = E[X(t+a)] = \mu_X \) and
\[
R_{X_1}(t, \tau) = E[X_1(t)X_1(t+\tau)]
= E[X(t+a)X(t+\tau+a)]
= R_X(\tau),
\] (1)

we have verified that \(X_1(t) \) is wide sense stationary. Now we calculate the cross correlation
\[
R_{XX_1}(t, \tau) = E[X(t)X_1(t+\tau)]
= E[X(t)X(t+\tau+a)]
= R_X(\tau + a).
\] (6)

Since \(R_{XX_1}(t, \tau) \) depends on the time difference \(\tau \) but not on the absolute time \(t \), we conclude that \(X(t) \) and \(X_1(t) \) are jointly wide sense stationary.

(b) Since \(E[X_2(t)] = E[X(at)] = \mu_X \) and
\[
R_{X_2}(t, \tau) = E[X_2(t)X_2(t+\tau)]
= E[X(at)X(a(t+\tau))]
= E[X(at)X(at+a\tau)] = R_X(a\tau),
\] (9)
we have verified that $X_2(t)$ is wide sense stationary. Now we calculate the cross correlation

$$R_{XX_2}(t, \tau) = E[X(t)X_2(t + \tau)]$$

$$= E[X(t)X(a(t + \tau))]$$

$$= R_X((a - 1)t + \tau).$$

Except for the trivial case when $a = 1$ and $X_2(t) = X(t)$, $R_{XX_2}(t, \tau)$ depends on both the absolute time t and the time difference τ, we conclude that $X(t)$ and $X_2(t)$ are not jointly wide sense stationary.

Problem 10.11.3

$X(t)$ is a wide sense stationary stochastic process with autocorrelation function $R_X(\tau) = 10 \sin(2\pi 1000\tau)/(2\pi 1000\tau)$. The process $Y(t)$ is a version of $X(t)$ delayed by 50 microseconds: $Y(t) = X(t - t_0)$ where $t_0 = 5 \times 10^{-5}s$.

(a) Derive the autocorrelation function of $Y(t)$.

(b) Derive the cross-correlation function of $X(t)$ and $Y(t)$.

(c) Is $Y(t)$ wide sense stationary?

(d) Are $X(t)$ and $Y(t)$ jointly wide sense stationary?

Problem 10.11.3 Solution

(a) $Y(t)$ has autocorrelation function

$$R_Y(t, \tau) = E[Y(t)Y(t + \tau)]$$

$$= E[X(t - t_0)X(t + \tau - t_0)]$$

$$= R_X(\tau).$$

(b) The cross correlation of $X(t)$ and $Y(t)$ is

$$R_{XY}(t, \tau) = E[X(t)Y(t + \tau)]$$

$$= E[X(t)X(t + \tau - t_0)]$$

$$= R_X(\tau - t_0).$$

(c) We have already verified that $R_Y(t, \tau)$ depends only on the time difference τ. Since $E[Y(t)] = E[X(t - t_0)] = \mu_X$, we have verified that $Y(t)$ is wide sense stationary.

(d) Since $X(t)$ and $Y(t)$ are wide sense stationary and since we have shown that $R_{XY}(t, \tau)$ depends only on τ, we know that $X(t)$ and $Y(t)$ are jointly wide sense stationary.

Comment: This problem is badly designed since the conclusions don’t depend on the specific $R_X(\tau)$ given in the problem text. (Sorry about that!)
Problem 11.2.1

The random sequence X_n is the input to a discrete-time filter. The output is

$$Y_n = \frac{X_{n+1} + X_n + X_{n-1}}{3}.$$

(a) What is the impulse response h_n?

(b) Find the autocorrelation of the output Y_n when X_n is a wide sense stationary random sequence with $\mu_X = 0$ and autocorrelation

$$R_X[n] = \begin{cases}
1 & n = 0, \\
0 & \text{otherwise}.
\end{cases}$$

Problem 11.2.1 Solution

(a) Note that

$$Y_i = \sum_{n=-\infty}^{\infty} h_n X_{i-n} = \frac{1}{3} X_{i+1} + \frac{1}{3} X_i + \frac{1}{3} X_{i-1} \quad (1)$$

By matching coefficients, we see that

$$h_n = \begin{cases}
1/3 & n = -1, 0, 1 \\
0 & \text{otherwise}
\end{cases} \quad (2)$$

(b) By Theorem 11.5, the output autocorrelation is

$$R_Y[n] = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h_i h_j R_X[n+i-j] \quad (3)$$

$$= \frac{1}{9} \sum_{i=-1}^{1} \sum_{j=-1}^{1} R_X[n+i-j] \quad (4)$$

$$= \frac{1}{9} \left(R_X[n+2] + 2R_X[n+1] + 3R_X[n] + 2R_X[n-1] + R_X[n-2] \right) \quad (5)$$

We see that the filter is linear and time invariant. Substituting in $R_X[n]$ yields

$$R_Y[n] = \begin{cases}
1/3 & n = 0 \\
2/9 & |n| = 1 \\
1/9 & |n| = 2 \\
0 & \text{otherwise}
\end{cases} \quad (6)$$
Problem 11.2.2 •

$X(t)$ is a wide sense stationary process with autocorrelation function

$$R_X(\tau) = 10 \frac{\sin(2000\pi t) + \sin(1000\pi t)}{2000\pi t}.$$

The process $X(t)$ is sampled at rate $1/T_s = 4,000$ Hz, yielding the discrete-time process X_n. What is the autocorrelation function $R_X[k]$ of X_n?

Problem 11.2.2 Solution

Applying Theorem 11.4 with sampling period $T_s = 1/4000$ s yields

$$R_X[k] = R_X(kT_s) = 10 \frac{\sin(2000\pi kT_s) + \sin(1000\pi kT_s)}{\pi k}$$

$$= 20 \sin(0.5\pi k) + \sin(0.25\pi k)$$

$$= 10 \text{sinc}(0.5k) + 5 \text{sinc}(0.25k)$$

Problem 11.3.1 •

X_n is a stationary Gaussian sequence with expected value $E[X_n] = 0$ and autocorrelation function $R_X[k] = 2^{-|k|}$. Find the PDF of $X = [X_1 \ X_2 \ X_3]'$.

Problem 11.3.1 Solution

Since the process X_n has expected value $E[X_n] = 0$, we know that $C_X(k) = R_X(k) = 2^{-|k|}$. Thus $X = [X_1 \ X_2 \ X_3]'$ has covariance matrix

$$C_X = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 1 \\ 1/2 & 1/2 & 1 \\ 1/2 & 1/2 & 1 \end{bmatrix}.$$ (1)

From Definition 5.17, the PDF of X is

$$f_X(x) = \frac{1}{(2\pi)^{n/2} |\det(C_X)|^{1/2}} \exp \left(-\frac{1}{2} x' C_X^{-1} x\right).$$ (2)

Equivalently, we can write out the PDF in terms of the variables x_1, x_2 and x_3. To do so we find that the inverse covariance matrix is

$$C_X^{-1} = \begin{bmatrix} 4/3 & -2/3 & 0 \\ -2/3 & 5/3 & -2/3 \\ 0 & -2/3 & 4/3 \end{bmatrix}.$$ (3)

A little bit of algebra will show that $\det(C_X) = 9/16$ and that

$$\frac{1}{2} x' C_X^{-1} x = \frac{2x_1^2}{3} + \frac{5x_2^2}{6} + \frac{2x_3^2}{3} - \frac{2x_1x_2}{3} - \frac{2x_2x_3}{3}.$$ (4)

It follows that

$$f_X(x) = \frac{4}{3(2\pi)^{3/2}} \exp \left(-\frac{2x_1^2}{3} - \frac{5x_2^2}{6} - \frac{2x_3^2}{3} + \frac{2x_1x_2}{3} + \frac{2x_2x_3}{3}\right).$$ (5)
Problem 11.3.2

\[X_n \] is a sequence of independent random variables such that \(X_n = 0 \) for \(n < 0 \) while for \(n \geq 0 \), each \(X_n \) is a Gaussian \((0, 1)\) random variable. Passing \(X_n \) through the filter \(h = [1 \ -1 \ 1]^\prime \) yields the output \(Y_n \). Find the PDFs of:

(a) \(Y_3 = [Y_1 \ Y_2 \ Y_3]^\prime \),

(b) \(Y_2 = [Y_1 \ Y_2]^\prime \).

Problem 11.3.2 Solution

The sequence \(X_n \) is passed through the filter

\[h = [h_0 \ h_1 \ h_2]^\prime = [1 \ -1 \ 1]^\prime \]

The output sequence is \(Y_n \).

(a) Following the approach of Equation (11.58), we can write the output \(Y_3 = [Y_1 \ Y_2 \ Y_3]^\prime \) as

\[
Y_3 = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} h_1 & h_0 & 0 \\ h_2 & h_1 & h_0 \\ 0 & h_2 & h_1 & h_0 \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \end{bmatrix} = HX. \]

We note that the components of \(X \) are iid Gaussian \((0, 1)\) random variables. Hence \(X \) has covariance matrix \(C_X = I \), the identity matrix. Since \(Y_3 = HX \),

\[C_Y = HC_X H' = HH' = \begin{bmatrix} 2 & -2 & 1 \\ -2 & 3 & -2 \\ 1 & -2 & 3 \end{bmatrix}. \]

Some calculation (by hand or by MATLAB) will show that \(\det(C_Y) = 3 \) and that

\[C_Y^{-1} = \frac{1}{3} \begin{bmatrix} 5 & 4 & 1 \\ 4 & 5 & 2 \\ 1 & 2 & 2 \end{bmatrix}. \]

Some algebra will show that

\[y' C_Y^{-1} y = \frac{5y_1^2 + 5y_2^2 + 2y_3^2 + 8y_1y_2 + 2y_1y_3 + 4y_2y_3}{3}. \]

This implies \(Y_3 \) has PDF

\[f_{Y_3}(y) = \frac{1}{(2\pi)^{3/2} [\det(C_Y)]^{1/2}} \exp \left(-\frac{1}{2} y' C_Y^{-1} y \right) \]

\[= \frac{1}{(2\pi)^{3/2} \sqrt{3}} \exp \left(-\frac{5y_1^2 + 5y_2^2 + 2y_3^2 + 8y_1y_2 + 2y_1y_3 + 4y_2y_3}{6} \right). \]
(b) To find the PDF of \(Y_2 = [Y_1 \ Y_2]' \), we start by observing that the covariance matrix of \(Y_2 \) is just the upper left 2 \times 2 submatrix of \(C_{Y_2} \). That is,

\[
C_{Y_2} = \begin{bmatrix} 2 & -2 \\ -2 & 3 \end{bmatrix} \quad \text{and} \quad C_{Y_2}^{-1} = \begin{bmatrix} 3/2 & 1 \\ 1 & 1 \end{bmatrix}.
\]

Since \(\det(C_{Y_2}) = 2 \), it follows that

\[
f_{Y_2}(y) = \frac{1}{(2\pi)^{3/2}\sqrt{\det(C_{Y_2})}} \exp\left(-\frac{1}{2} y' C_{Y_2}^{-1} y\right)
\]

\[
= \frac{1}{(2\pi)^{3/2}\sqrt{2}} \exp\left(-\frac{3}{2} y_1^2 - 2y_1y_2 - y_2^2\right).
\]

Problem 11.5.1 •

(1) \(X(t) \) is a wide sense stationary process with autocorrelation function

\[
R_X(\tau) = 10\sin(2000\pi \tau) + \sin(1000\pi \tau) / 2000\pi \tau.
\]

What is the power spectral density of \(X(t) \)?

Problem 11.5.1 Solution

To use Table 11.1, we write \(R_X(\tau) \) in terms of the autocorrelation

\[
sinc(x) = \frac{\sin(\pi x)}{\pi x}.
\]

In terms of the sinc(\(\cdot \)) function, we obtain

\[
R_X(\tau) = 10 \text{sinc}(2000\tau) + 5 \text{sinc}(1000\tau).
\]

From Table 11.1,

\[
S_X(f) = \frac{10}{2000} \text{rect} \left(\frac{f}{2000} \right) + \frac{5}{1000} \text{rect} \left(\frac{f}{1000} \right)
\]

Here is a graph of the PSD.
Problem 11.6.1

X_n is a wide sense stationary discrete-time random sequence with autocorrelation function

$$R_X[k] = \begin{cases}
\delta[k] + (0.1)^{|k|} & k = 0, \pm 1, \pm 2, \ldots, \\
0 & \text{otherwise.}
\end{cases}$$

Find the power spectral density $S_X(f)$.

Problem 11.6.1 Solution

Since the random sequence X_n has autocorrelation function

$$R_X[k] = \delta[k] + (0.1)^{|k|}, \quad (1)$$

We can find the PSD directly from Table 11.2 with $0.1^{|k|}$ corresponding to $a^{|k|}$. The table yields

$$S_X(\phi) = 1 + \frac{1 - (0.1)^2}{1 + (0.1)^2 - 2(0.1)\cos 2\pi\phi} = \frac{2 - 0.2 \cos 2\pi\phi}{1.01 - 0.2 \cos 2\pi\phi}. \quad (2)$$