Solution to Homework Assignment 4

1. Consider the open-loop transfer function

\[G(s) = \frac{K(s + 1)}{(s - 1)(s^2 + 8s + 32)}. \]

(a) Use the Routh array to determine the range of values of \(K \) for which the closed-loop system with negative unity feedback is stable.

\[p(s) = (s - 1)(s^2 + 8s + 32) + K(s + 1) = s^3 + 7s^2 + (24 + K)s + (K - 32). \]

The Routh array is then

\[
\begin{array}{c|ccc}
 s^3 & 1 & (24 + K) \\
 s^2 & 7 & (K - 32) \\
 s^1 & \alpha & 0 \\
 s^0 & (K - 32)
\end{array}
\]

where

\[\alpha = \frac{-1}{6} (K - 32 - 7(24 + K)) = \frac{1}{6} (6K + 200) \]

and the first element in the \(s^0 \) row can be computed easily by observing that

\[\frac{1}{\alpha} (0 - \alpha(K - 32)) = K - 32. \]

Applying the Routh-Hurwitz criterion, the closed loop system is stable if \(K > 32 \) (from the \(s^0 \) row) and \(K > -200/6 \) (from the \(s^1 \) row), so we need \(K > 32 \).

(b) Now select a value of \(K \) that produces the least overshoot and plot the step response of the closed-loop system. Be sure to use a time range that shows the important aspects of the behavior.

Solution: Using the Matlab script below, we find that the value of \(\zeta \) seems to decrease with increasing \(K \), which would indicate that to decrease the overshoot we should pick a small \(K \). Of course, we have to figure out what value of “small” is appropriate. In the matlab script, I tested the value \(K = 1 \), and since that yields no overshoot, we can’t do better than that, so \(K = 1 \) will do. The plots are shown in Figures 1 and 2. Here’s the script.

```matlab
%%
%% Homework 4, Problem 1 Solution sk 10/29/08
%%

for index = 1:1000,
    rs(index,:) = roots([1 7 (24 + 32+index) index]);
```
z(index) = -real(rs(index,1))/abs(rs(index,1));
end;
figure(1)
plot(z);
title('HW4 P1: Damping Coefficient ζ vs. Gain K')
xlabel('Gain K')
ylabel('Damping Coefficient ζ')
grid
print -depsc 'HW4_p1_fig1'
[y,t] = step(tf([1 1],[1 7 25 1]));
figure(2)
plot(t,y);
title('HW4 P1: Step Response for $K=1$')
xlabel('Time t')
ylabel('Output $y(t)$')
grid
print -depsc 'HW4_p1_fig2'
HW4 P1: Step Response for K=1

Output \(y(t) \) vs. Time \(t \)
2. Consider a unity negative feedback system with forward path (open loop) transfer function
\[G(s) = \frac{K}{s((s + 3 + K/3)(s + p) + (K/3))}. \]
(a) Draw a block diagram, in which each block contains a transfer function having at most one pole and at most one zero that would implement this closed-loop system. (There is more than one way to do this. Any correct answer will do.)

(b) Assume that the value \(p \) may take any value in the set \(\{1, 2, 3\} \). Find the range of values for the gain \(K \) that result in a stable closed-loop system regardless of which of the three values \(p \) takes.

Solution: A little tedious algebra yields the Routh array:

\[
\begin{align*}
s^3 : & \quad 1 \quad \left(3 + \frac{K}{3}\right)p + \frac{K}{3} \\
s^2 : & \quad \frac{9+3p+K}{3} \quad K \\
s^1 : & \quad \frac{9+3p-2K}{9+3p+K} \quad 0 \\
s^0 : & \quad \frac{K}{K}
\end{align*}
\]

which gives us three constraints on the value of \(K \) for the system to be stable, namely

\[
\begin{align*}
9 + 3p + K & > 0 \quad (8) \\
9 + 3p-2K & > 0 \quad (9) \\
K & > 0. \quad (10)
\end{align*}
\]

The first condition simplifies to \(K > -9 - 3p \). For the three given values of \(p \), the maximum of the right hand side occurs when \(p = 1 \), yielding \(K > -12 \). The second condition simplifies to \(K < (9 + 3p)/2 \). The minimum of the right hand side occurs when \(p = 1 \), yielding the constraint \(K < 6 \). Thus, the acceptable range of values for the gain \(K \) is \(0 < K < 6 \).

3. Consider the Single-Input Single-Output (SISO) system with state space representation
\[
\begin{align*}
\dot{x}(t) & = \begin{bmatrix} 0 & 2 \\ 1 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\
y(t) & = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)
\end{align*}
\]
and input \(u(t) = -Kx(t) + r(t) \).

(a) Determine the closed loop transfer function \(y(s)/r(s) \).

Solution: First, we substitute for \(u \) in the state equation to obtain
\[
\begin{align*}
\dot{x}(t) & = A x(t) + B (-Kx(t) + r(t)) \\
& = (A - BK)x(t) + Br(t) \\
& = \begin{bmatrix} 0 & 2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t) \\
& = \begin{bmatrix} 0 \\ 1 - k_1 -3 - k_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t) \\
& = A_{cl} x(t) + Br(t).
\end{align*}
\]
The transfer function is then
\[
g(s) = \frac{y(s)}{r(s)} = C(sI - Acl)^{-1}B + D
\]
\[= \left[\begin{array}{cc} 1 & 0 \\ -1 + k_1 & s + 3 + k_2 \end{array} \right]^{-1} \left[\begin{array}{c} 0 \\ 1 \end{array} \right] + 0 \]
\[= \frac{2}{s(s + 3 + k_2) - (2(1 - k_1))} = \frac{2}{s^2 + (3 + k_2)s + 2(k_1 - 1)}. \]

(b) Determine the range of values \(k_1\) and \(k_2\) for the closed-loop transfer function to be stable.

Solution: Using the Routh Array or any other valid method we find that we need both \(3 + k_2\) and \(2(k_1 - 1)\) positive, or \(k_2 > -3\) and \(k_1 > 1\).

(c) Select values of \(k_1\) and \(k_2\) such that the settling time of the unit step response is 1 second.

Solution: The problem should have specified which settling time was required, but we know that if this is not specified, the 2\%-settling time is usually a reasonable choice. Then we want \(1 = T_s = \frac{4}{\omega_n\zeta}\), so we need \(\omega_n\zeta = 4\) and the \(k_i\) must satisfy
\[
\begin{align*}
3 + k_2 &= 2\omega_n\zeta = 8 \\
2(k_1 - 1) &= \omega_n^2.
\end{align*}
\]
Obviously we need \(k_2 = 5\). We have to think a little more to choose an appropriate value for \(k_1\). It might appear that we could choose any \(\omega_n\) whatsoever, but for a step response we would generally want to use a \(\zeta\) around 0.707. To get a quick order of magnitude estimate, I observe that for \(\zeta = 1\) we’d need \(k_1 = 9\). Decreasing \(\zeta\) would increase \(\omega_n\) and thus the required value for \(k_1\). Since 0.707 = \(1/\sqrt{2}\), decreasing \(\zeta\) to 90.707 would increase \(\omega_n\) by \(\sqrt{2}\), hence \(\omega_n^2\) by 4. We thus need to roughly double \(k_1\). To be precise, for \(\zeta = 1/\sqrt{2}\) we need \(k_1 = 17\).

(d) For your matrix \(K\), calculate the step response of the state space system. (That means you need to determine both \(x(t)\) and \(y(t)\)).

Solution: Having been given no initial condition we assume \(x(0) = 0\). We note that the output is just \(y = x_2\) so if we determine the step response of the states we will also have the step response of the output. I used the Matlab script below to obtain the step response that follows.

```matlab
%%
%% Homework 4, Problem 3 Solution   sk 11/15/08
%%

k1 = (4/0.707)^2/2+1
k2 = 5;
A = [0 2;1-k1 -3-k2];
B = [0;1];
C = eye(2);
D = 0*B;
```
[y,t] = step(ss(A,B,C,D));
figure(2)
plot(t,y);
title('HW4 P3: Step Response for K=1')
xlabel('Time t')
ylabel('States')
legend('x_1','x_2')
grid
print -depsc 'HW4_p3_fig1'