ECE 602 Lecture Notes:
Cayley-Hamilton Examples

The Cayley Hamilton Theorem states that a square $n \times n$ matrix A satisfies its own characteristic equation. Thus, we can express A^n in terms of a finite set of lower powers of A. This fact leads to a simple way of calculating the value of a function evaluated at the matrix. This method is given in Theorem 3.5 of the textbook\(^1\). Here we give a couple of examples.

We will consider polynomial functions $f(A)$ and the exponential function e^{At}. We’ll work with the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

which has the convenient property that

$$A^k = \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$ (2)

The characteristic equation of A can be obtained easily by noting the second and third rows each have only a single nonzero entry. Using the second we have

$$\Delta(\lambda) = (s - 1)^3,$$ (3)

so the matrix has a single eigenvalue 1 with multiplicity three.

Because the matrix is 3×3 we will use the polynomial

$$h(\lambda) := \beta_0 + \beta_1 \lambda + \beta_2 \lambda^2$$ (4)

in our calculations. We select the notation $f^{(k)}(\lambda) := d^k f / d\lambda^k$.

Example 1 Consider the polynomial $f(\lambda) = \lambda^5 - 1$.

We obtain three linear equations in three unknowns as follows. Because the eigenvalue of A has multiplicity three we must use two derivatives of f and h. Our equations are

$$f(\lambda) = \lambda^5 - 1 \quad h(\lambda) = \beta_0 + \beta_1 \lambda + \beta_2 \lambda^2$$ (5)

$$f^{(1)}(\lambda) = 5\lambda^4 \quad h^{(1)}(\lambda) = \beta_1 + 2 \beta_2 \lambda$$ (6)

$$f^{(2)}(\lambda) = 20\lambda^3 \quad h^{(2)}(\lambda) = 2 \beta_2.$$ (7)

We obtain
\[f(1) = 0 = \beta_0 + \beta_1 + \beta_2 = h(1) \] (8)
\[f^{(1)}(1) = 5 = \beta_1 + 2\beta_2 = h^{(1)}(1) \] (9)
\[f^{(2)}(1) = 20 = 2\beta_2 = h^{(2)}(1) \] (10)

Solving for the \(\beta \)s we find
\[\beta_2 = 10, \quad \beta_1 = -15, \quad \beta_0 = 5. \] (11)

Thus
\[f(A) = \beta_0 A^0 + \beta_1 A^1 + \beta_2 A^2 \] (12)
\[= 5I - 15A + 10A^2 \] (13)
\[= \begin{bmatrix} 0 & 5 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \] (14)
\[= A^5 - I. \] (15)

Example 2 Consider the function \(f(\lambda) = e^{\lambda t} \).

We obtain three linear equations in three unknowns as follows. Because the eigenvalue of \(A \) has multiplicity three we must use two derivatives of \(f \) and \(h \). Remembering that we are taking derivatives with respect to \(\lambda \), our equations are
\[f(\lambda) = e^{\lambda t} \quad h(\lambda) = \beta_0 + \beta_1 \lambda + \beta_2 \lambda^2 \] (16)
\[f^{(1)}(\lambda) = e^{\lambda t} \quad h^{(1)}(\lambda) = \beta_1 + 2\beta_2 \lambda \] (17)
\[f^{(2)}(\lambda) = t^2 e^{\lambda t} \quad h^{(2)}(\lambda) = 2\beta_2. \] (18)

We obtain
\[f(1) = e^t = \beta_0 + \beta_1 + \beta_2 = h(1) \] (19)
\[f^{(1)}(1) = te^t = \beta_1 + 2\beta_2 = h^{(1)}(1) \] (20)
\[f^{(2)}(1) = t^2 e^t/2 = 2\beta_2 = h^{(2)}(1). \] (21)

Solving for the \(\beta \)s we find
\[\beta_2 = t^2 e^t/2, \quad \beta_1 = te^t - t^2 e^t, \quad \beta_0 = e^t - te^t + t^2 e^t/2. \] (22)

Thus
\[f(A) = \beta_0 A^0 + \beta_1 A^1 + \beta_2 A^2 \] (23)
\[= e^t (1 - t + t^2/2) I + e^t (t - t^2) A + e^t (t^2/2) A^2 \] (24)
\[= \begin{bmatrix} e^t & te^t & 0 \\ 0 & e^t & 0 \\ 0 & 0 & e^t \end{bmatrix}. \] (25)
Example 3 Computation of $(sI - A)^{-1}$ for

$$A = \begin{bmatrix} 0 & -1 \\ 1 & -2 \end{bmatrix}$$

using equivalence on the spectrum of A.

First let’s find the spectrum of A.

$$|sI - A| = \begin{bmatrix} s & 1 \\ -1 & s + 2 \end{bmatrix} = s(s + 2) - (-1) = s^2 + 2s + 1 = (s + 1)^2$$

so A has eigenvalue $\lambda = -1$ with multiplicity 2.

Next, let $f(\lambda) = (s - \lambda)^{-1}$ and, as always, $h(\lambda) = \beta_0 + \beta_1 \lambda$.

Then $f^{(1)}(\lambda) = -(-1)(s - \lambda)^{-2}$ and $h^{(1)}(\lambda) = \beta_1$.

Substituting the eigenvalue for λ yields

$$\beta_1 = (s + 1)^{-2}$$
$$\beta_0 = (s + 1)^{-1} - (-1)(s + 1)^{-2} = (s + 2)(s + 1)^{-2}$$

Thus $h(\lambda) = (s + 2)(s + 1)^{-2} + (s + 1)^{-2} \lambda$ and substituting A for λ yields

$$f(A) = (sI - A)^{-1}$$
$$= (s + 2)(s + 1)^{-2}I + (s + 1)^{-2}A$$

$$= \begin{bmatrix} \frac{s + 2}{(s + 1)^2} & \frac{-1}{(s + 1)^2} \\ \frac{1}{(s + 1)^2} & \frac{s + 2 - 2}{(s + 1)^2} \end{bmatrix}.$$