Let s_i denote the outcome that the roll is i. So, for $1 \leq i \leq 6$, $R_i = \{s_i\}$. Similarly, $G_j = \{s_{j+1}, \ldots, s_6\}$. Note that $P[R_iG_j] = P[R_i]$ if $i > j$ and 0 otherwise. $P[R_i] = 1/6$ for all i. $P[E] = 1/2$. $P[G_j] = (6-i)/6$.

(a) Since $G_1 = \{s_2, s_3, s_4, s_5, s_6\}$ and all outcomes have probability $1/6$, $P[G_1] = 5/6$. The event $R_3G_1 = \{s_3\}$ and $P[R_3G_1] = 1/6$ so that

$$P[R_3|G_1] = \frac{P[R_3G_1]}{P[G_1]} = \frac{1}{5}. \quad (1)$$

(b) The conditional probability that 6 is rolled given that the roll is greater than 3 is

$$P[R_6|G_3] = \frac{P[R_6G_3]}{P[G_3]} = \frac{P[s_6]}{P[s_4, s_5, s_6]} = \frac{1/6}{3/6} = \frac{1}{3}. \quad (2)$$

(c) The event E that the roll is even is $E = \{s_2, s_4, s_6\}$ and has probability $3/6$. The joint probability of G_3 and E is

$$P[G_3E] = P[s_4, s_6] = 1/3. \quad (3)$$

The conditional probabilities of G_3 given E is

$$P[G_3|E] = \frac{P[G_3E]}{P[E]} = \frac{1/3}{1/2} = \frac{2}{3}. \quad (4)$$

(d) The conditional probability that the roll is even given that it’s greater than 3 is

$$P[E|G_3] = \frac{P[EG_3]}{P[G_3]} = \frac{1/3}{1/2} = \frac{2}{3}. \quad (5)$$
Prob 1.4.4 Solution

Let A_i and B_i denote the events that the ith phone sold is an Apricot or a Banana respectively. Our goal is to find $P[B_1B_2]$, but since it is not clear where to start, we should plan on filling in the table

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>B_1</th>
<th>A_2</th>
<th>B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$P[A_1A_2]$</td>
<td>$P[A_1B_2]$</td>
<td>$P[A_2A_2]$</td>
<td>$P[A_2B_2]$</td>
</tr>
<tr>
<td>B_1</td>
<td>$P[B_1A_2]$</td>
<td>$P[B_1B_2]$</td>
<td>$P[B_2A_2]$</td>
<td>$P[B_2B_2]$</td>
</tr>
</tbody>
</table>

This table has four unknowns: $P[A_1A_2]$, $P[A_1B_2]$, $P[B_1A_2]$, and $P[B_1B_2]$. We start knowing that

$$P[A_1A_2] + P[A_1B_2] + P[B_1A_2] + P[B_1B_2] = 1. \tag{1}$$

We still need three more equations to solve for the four unknowns. From “sales of Apricots and Bananas are equally likely,” we know that $P[A_i] = P[B_i] = 1/2$ for $i = 1, 2$. This implies

$$P[A_1] = P[A_1A_2] + P[A_1B_2] = 1/2, \tag{2}$$

$$P[A_2] = P[A_1A_2] + P[B_1A_2] = 1/2. \tag{3}$$

The final equation comes from “given that the first phone sold is a Banana, the second phone is twice as likely to be a Banana,” which implies $P[B_2|B_1] = 2P[A_2|B_1]$. Using Bayes’ theorem, we have

$$\frac{P[B_1B_2]}{P[B_1]} = 2 \frac{P[B_1A_2]}{P[B_1]} \implies P[B_1A_2] = \frac{1}{2} P[B_1B_2]. \tag{4}$$

Replacing $P[B_1A_2]$ with $P[B_1B_2]/2$ in the the first three equations yields

$$P[A_1A_2] + P[A_1B_2] + \frac{3}{2} P[B_1B_2] = 1, \tag{5}$$

$$P[A_1A_2] + P[A_1B_2] = 1/2, \tag{6}$$

$$P[A_1A_2] + \frac{1}{2} P[B_1B_2] = 1/2. \tag{7}$$

Subtracting (6) from (5) yields $(3/2)P[B_1B_2] = 1/2$, or $P[B_1B_2] = 1/3$, which is the answer we are looking for.
At this point, if you are curious, we can solve for the rest of the probability table. From (4), we have $P[B_1A_2] = 1/6$ and from (7) we obtain $P[A_1A_2] = 1/3$. It then follows from (6) that $P[A_1B_2] = 1/6$. The probability table is

<table>
<thead>
<tr>
<th></th>
<th>A_2</th>
<th>B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1/3</td>
<td>1/6</td>
</tr>
<tr>
<td>B_1</td>
<td>1/6</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Problem 1.4.5 Solution

The first generation consists of two plants each with genotype yg or gy. They are crossed to produce the following second generation genotypes, $S = \{yy, yg, gy, gg\}$. Each genotype is just as likely as any other so the probability of each genotype is consequently 1/4. A pea plant has yellow seeds if it possesses at least one dominant y gene. The set of pea plants with yellow seeds is

$$Y = \{yy, yg, gy\}.$$ \hspace{1cm} (1)

So the probability of a pea plant with yellow seeds is

$$P[Y] = P[yy] + P[yg] + P[gy] = 3/4.$$ \hspace{1cm} (2)

Problem 1.4.6 Solution

Define D as the event that a pea plant has two dominant y genes. To find the conditional probability of D given the event Y, corresponding to a plant having yellow seeds, we look to evaluate

$$P[D|Y] = \frac{P[DY]}{P[Y]}.$$ \hspace{1cm} (1)

Note that $P[DY]$ is just the probability of the genotype yy. From Problem 1.4.5, we found that with respect to the color of the peas, the genotypes yy, yg, gy, and gg were all equally likely. This implies

$$P[DY] = P[yy] = 1/4 \quad P[Y] = P[yy, gy, yg] = 3/4.$$ \hspace{1cm} (2)

Thus, the conditional probability can be expressed as

$$P[D|Y] = \frac{P[DY]}{P[Y]} = \frac{1/4}{3/4} = 1/3.$$ \hspace{1cm} (3)
Problem 1.4.8 Solution

The problem statement yields the obvious facts that \(P[L] = 0.16\) and \(P[H] = 0.10\). The words “10% of the ticks that had either Lyme disease or HGE carried both diseases” can be written as

\[
P[LH | L \cup H] = 0.10. \tag{1}
\]

(a) Since \(LH \subset L \cup H\),

\[
P[LH | L \cup H] = \frac{P[LH \cap (L \cup H)]}{P[L \cup H]} = \frac{P[LH]}{P[L \cup H]} = 0.10. \tag{2}
\]

Thus,

\[
P[LH] = 0.10 P[L \cup H] = 0.10 (P[L] + P[H] - P[LH]). \tag{3}
\]

Since \(P[L] = 0.16\) and \(P[H] = 0.10\),

\[
P[LH] = \frac{0.10 (0.16 + 0.10)}{1.1} = 0.0236. = 13/50 \tag{4}
\]

(b) The conditional probability that a tick has HGE given that it has Lyme disease is

\[
P[H | L] = \frac{P[LH]}{P[L]} = \frac{0.0236}{0.16} = 0.1475. = 13/88 \tag{5}
\]
Problem 1.5.2 Solution

(a) From the given probability distribution of billed minutes, M, the probability that a call is billed for more than 3 minutes is

$$P[L] = 1 - P[3 \text{ or fewer billed minutes}] = 1 - P[B_1] - P[B_2] - P[B_3] = 1 - \alpha - \alpha(1 - \alpha) - \alpha(1 - \alpha)^2 = (1 - \alpha)^3 = 0.57.$$ \hfill (1)

(b) The probability that a call will billed for 9 minutes or less is

$$P[9 \text{ minutes or less}] = \sum_{i=1}^{9} \alpha(1 - \alpha)^{i-1} = 1 - (0.57)^3. \hfill (2)$$
Problem 1.6.1 Solution

This problem asks whether \(A \) and \(B \) can be independent events yet satisfy \(A = B \)?

By definition, events \(A \) and \(B \) are independent if and only if \(P[AB] = P[A]P[B] \).

We can see that if \(A = B \), that is they are the same set, then
\[
\]

Thus, for \(A \) and \(B \) to be the same set and also independent,
\[
\]

There are two ways that this requirement can be satisfied:

- \(P[A] = 1 \) implying \(A = B = S \).
- \(P[A] = 0 \) implying \(A = B = \emptyset \).

Problem 1.6.2 Solution

From the problem statement, we learn three facts:

\[
\begin{align*}
P[AB] &= 0 \quad \text{(since} \ A \text{ and} \ B \text{ are mutually exclusive)} \quad (1) \\
P[AB] &= P[A]P[B] \quad \text{(since} \ A \text{ and} \ B \text{ are independent)} \quad (2) \\
P[A] &= P[B] \quad \text{(since} \ A \text{ and} \ B \text{ are equiprobable)} \quad (3)
\end{align*}
\]

Applying these facts in the given order, we see that
\[
0 = P[AB] = P[A]P[B] = (P[A])^2. \quad (4)
\]

It follows that \(P[A] = 0 \).

The 3rd "=" is important here because \(P[AB]=0 \) implies that at least one of \(P[A] \) and \(P[B]=0 \) but not that both are zero.

Problem 1.6.3 Solution

Let \(A_i \) and \(B_i \) denote the events that the \(i \)th phone sold is an Apricot or a Banana respectively. The works "each phone sold is twice as likely to be an Apricot than a Banana" tells us that
\[
P[A_i] = 2P[B_i].
\]

The 3rd "=" is important here because \(P[AB]=0 \) implies that at least one of \(P[A] \) and \(P[B]=0 \) but not that both are zero.
Problem 1.6.4 Solution

In the Venn diagram, assume the sample space has area 1 corresponding to probability 1. As drawn, both A and B have area $1/4$ so that $P[A] = P[B] = 1/4$. Moreover, the intersection AB has area $1/16$ and covers $1/4$ of A and $1/4$ of B. That is, A and B are independent since

$$P[AB] = P[A]P[B].$$ \hspace{1cm} (1)
Problem 1.6.6 Solution Given \(P[C] = 5/8 \), \(P[D] = 3/8 \), \(C, D \) independent.

(a) Since \(C \) and \(D \) are independent,

\[
P[C \cap D] = P[C] P[D] = 15/64. \tag{1}
\]

The next few items are a little trickier. From Venn diagrams, we see

Don't need to draw the Venn diagram.

\[
P[C \cap D^c] = P[C] - P[C \cap D] = 5/8 - 15/64 = 25/64. \tag{2}
\]

It follows that

\[
P[C \cup D^c] = P[C] + P[D^c] - P[C \cap D^c] \tag{3}
\]
\[
= 5/8 + (1 - 3/8) - 25/64 = 55/64. \tag{4}
\]

Using DeMorgan's law, we have because \(P[C \text{ or } D] = P[C] + P[D] - P[CD] \)

\[
P[C^c \cap D^c] = P[(C \cup D)^c] = 1 - P[C \cup D] = 15/64. \tag{5}
\]

(b) Since \(P[C^c D^c] = P[C^c] P[D^c] \), \(C^c \) and \(D^c \) are independent. (by the definition of independence)
Problem 1.6.8 Solution \[\text{Given C, D independent, } P[CD]=1/3, P[C]=1/2 \]

(a) Since \(C \) and \(D \) are independent \(P[CD] = P[C]P[D] \). So

\[
P[D] = \frac{P[CD]}{P[C]} = \frac{1/3}{1/2} = 2/3. \tag{1}
\]

In addition, \(P[C \cap D^c] = P[C] - P[C \cap D] = 1/2 - 1/3 = 1/6 \). To find \(P[C^c \cap D^c] \), we first observe that

\[
P[C \cup D] = P[C] + P[D] - P[C \cap D] = 1/2 + 2/3 - 1/3 = 5/6. \tag{2}
\]

By De Morgan’s Law, \(C^c \cap D^c = (C \cup D)^c \). This implies

\[
P[C^c \cap D^c] = P[(C \cup D)^c] = 1 - P[C \cup D] = 1/6. \tag{3}
\]

Note that a second way to find \(P[C^c \cap D^c] \) is to use the fact that if \(C \) and \(D \) are independent, then \(C^c \) and \(D^c \) are independent. Thus

\[
P[C^c \cap D^c] = P[C^c]P[D^c] = (1 - P[C])(1 - P[D]) = 1/6. \tag{4}
\]

Finally, since \(C \) and \(D \) are independent events, \(P[C|D] = P[C] = 1/2 \).

(b) Note that we found \(P[C \cup D] = 5/6 \). We can also use the earlier results to show

\[
P[C \cup D^c] = P[C] + P[D] - P[C \cap D^c]
= 1/2 + (1 - 2/3) - 1/6 = 2/3. \tag{6}
\]

(c) By Definition 1.6, events \(C \) and \(D^c \) are independent because

\[
P[C \cap D^c] = 1/6 = (1/2)(1/3) = P[C]P[D^c]. \tag{7}
\]
Problem 1.6.10 Solution

There are 16 distinct equally likely outcomes for the second generation of pea plants based on a first generation of \(\{rwyg, rwgy, wryg, wrgy\}\). These are:

\[
\begin{align*}
rryy & \quad rryg & \quad rrgy & \quad rrgg \\
rwyy & \quad rwyg & \quad rwgy & \quad rwgg \\
wryy & \quad wryg & \quad wrgy & \quad wrgg \\
wwyy & \quad wwyg & \quad wwgy & \quad wwgg
\end{align*}
\]

which yield: RY, RY, RY, RG (first 3 rows) and WY, WY, WY, WG

A plant has yellow seeds, that is event \(Y\) occurs, if a plant has at least one dominant \(y\) gene. Except for the four outcomes with a pair of recessive \(g\) genes, the remaining 12 outcomes have yellow seeds. From the above, we see that

\[
P[Y] = 12/16 = 3/4 \quad (1)
\]

and

\[
P[R] = 12/16 = 3/4. \quad (2)
\]

To find the conditional probabilities \(P[R|Y]\) and \(P[Y|R]\), we first must find \(P[RY]\). Note that \(RY\), the event that a plant has rounded yellow seeds, is the set of outcomes

\[
RY = \{rryy, rryg, rrgy, rwyy, rwyg, rwgy, wryy, wryg, wrgy\}. \quad (3)
\]
Since $P[RY] = 9/16$,

$$P[Y|R] = \frac{P[RY]}{P[R]} = \frac{9/16}{3/4} = 3/4$$

and

$$P[R|Y] = \frac{P[RY]}{P[Y]} = \frac{9/16}{3/4} = 3/4.$$ (4)

Thus $P[R|Y] = P[R]$ and $P[Y|R] = P[Y]$ and R and Y are independent events.

There are four visibly different pea plants, corresponding to whether the peas are round (R) or not (R^c), or yellow (Y) or not (Y^c). These four visible events have probabilities

$$P[RY] = 9/16 \quad P[RY^c] = 3/16,$$ (6)

$$P[R^cY] = 3/16 \quad P[R^cY^c] = 1/16.$$ (7)
Problem 1.6.12 Solution

In the Venn diagram at right, assume the sample space has area 1 corresponding to probability 1. As drawn, A, B, and C each have area $1/2$ and thus probability $1/2$. Moreover, the three way intersection ABC has probability $1/8$. Thus A, B, and C are mutually independent since

(1)