Solution to HW8

AP10.1 We are given a unity negative feedback system with a compensator having transfer function $G_c(s)$ preceding the plant in the forward path. The plant transfer function is

$$G(s) = \frac{1}{s(s + 1)(s + 4)}.$$

In part (a) we are asked to determine a gain K such that $G_c(s) = K$ satisfies the requirement that the overshoot in response to a step input should be less than 13%. We are then asked to determine the resulting 2% settling time for the closed–loop system. In part (b) we are asked to design a lead network to reduce the settling time to 3 seconds.

Solution:

(a) The percent overshoot is given by

$$P.O. = 100e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}.$$

Thus we solve for ζ as follows:

$$\frac{13}{100} = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}$$

so

$$\ln 13 - \ln 100 = -\frac{\pi\zeta}{\sqrt{1-\zeta^2}}$$

and thus

$$(\ln 13 - \ln 100)^2(1 - \zeta^2) = \pi^2\zeta^2$$

so finally

$$\zeta = -\frac{\ln 13 - \ln 100}{\pi^2 + (\ln 13 - \ln 100)^2} = 0.5118$$

where the positive square root was chosen since ζ must be nonnegative. Increasing ζ decreases the percent overshoot so this is a lower bound on acceptable values of ζ. Let’s take $\zeta = 0.55$ to give ourselves a margin of error. This corresponds to a percent overshoot of 12.6.

The closed–loop transfer function is

$$T(s) = \frac{K}{s^3 + 5s^2 + 4s + K}$$

so we can use the root locus method to determine the value of K corresponding to $\zeta = 0.55$. Using the MATLAB command `rlocus(i,[1 5 4 0])` corresponding to the root locus for

$$1 + \frac{K}{s^3 + 5s^2 + 4s} = 0$$

obtained by dividing the denominator of $T(s)$ by the terms not containing the gain K we find that $K = 2.26$ corresponds to $\zeta = .559$ so we choose $K = 2.25$. We then
determine the step response of the corresponding closed-loop system and verify that the percentage overshoot is an acceptable 11.44%.

The MATLAB commands to find ζ and K are shown in the transcript below. To determine the settling time I generated a step response for a time vector (0 to 20 seconds) that was large enough to produce the initial overshoot followed by some additional oscillation. I then used the `find` command to identify the indices of the values of the output y for which the response was not within 2% of the steady-state value of 1. Adding one to the largest such index gives the index of the settling time. The settling time I found was 8.25 seconds.

Here’s the MATLAB script, followed by the plots generated.

```matlab
% Solve AP10.1(a)

zeta = -(log(13)-log(100))/sqrt(pi^2+(log(13)-log(100))^2)
sys = tf(1,[1 5 4 0])

rlocus(sys)
title('RootLocus for AP10.1a')
print -deps ap10_1a_rlocus.eps

K = input('Enter K chosen from root locus for zeta calculated above: ')
clsys=feedback(K*sys,1)
t=[0:.01:20];
y=step(clsys,t);figure(2);plot(t,y);grid
title(['Step response for closed loop system with gain K = ',num2str(K)])
xlabel('Time (s)')
print -deps ap10_1a_step.eps

disp('Maximum overshoot:')
max(y)
indices = find(abs(y-ones(size(y)))>0.02);
disp('Settling time:')
Ts = t(max(indices)+1)
```

(b) Next, we are asked to use a lead compensator with transfer function

$$G_c(s) = \frac{1 + \alpha \tau s}{\alpha (1 + \tau s)} = \frac{s + z}{s + p}$$

to reduce the settling time to under 3 seconds while maintaining the percent overshoot less than 13%. We do this in the following steps.

1. We determine the required ω_n from the expression for T_s ($T_s = 4/(\zeta \omega_n)$). Using again $\zeta = 0.55$ we find that for $T_s = 3$ we obtain $\omega_n = 2.4$ rad/s.
2. Using MATLAB to generate a Bode plot for the closed-loop system for

$$G(s) = \frac{2.25}{s^3 + 5s^2 + 4s}.$$

we see that the 3dB-bandwidth attained is only 0.85 rad/s. We use the commands
Figure 1: Root locus plot for determining K corresponding to $\zeta = 0.55$

$$K = [2.25]$$

$$s1 = \text{feedback}(\text{tf}([K],[1 5 4 0]),1)$$

$$s3 = \text{feedback}(\text{tf}([3*K],[1 5 4 0]),1)$$

$$s5 = \text{feedback}(\text{tf}([5*K],[1 5 4 0]),1)$$

$$s7 = \text{feedback}(\text{tf}([7*K],[1 5 4 0]),1)$$

To test higher gains until we find one that achieves the required bandwidth. The Bode plot is shown in Figure 3. The system $s7$ whose Bode plot has acceptable bandwidth has gain $7 \times 2.25 = 15.75$ so we choose $K = 16$.

3. We use the `margin` command to find the phase margin for the open-loop system with gain $K = 16$ as shown below:

```matlab
>> [Gm,Pm,wcg,wcp]=margin([16],[1 5 4 0])
```

$$Gm =$$

1.2500
Figure 2: Step response for controlled system with $G_c(s) = K = 2.25$

Step response for closed loop system with gain $K = 2.25$

$P_m = 5.2057$

$w_{cg} = 2.0000$

$w_{cp} = 1.7852$
4. We calculate the required phase to be added using the lead compensator. For $\zeta = .55$, the rule of thumb presented in the text in (9.58), page 492, is that ϕ_{pm} should be 100ζ degrees so we need $55 - (-5) = 50$ degrees.

5. Calculate α from (10.11), p. 559. We obtain $\alpha = 7.5$.

6. Find the new 0 dB crossover frequency ω_m by identifying the frequency on the Bode plot where the gain is $-10\log \alpha$ dB. This gain is $-10\log 7.5 = -8.75$. The corresponding frequency is approximately 2.9 rad/s.

7. Determine the pole and zero of the compensator.

$$p = \omega_m \sqrt{\alpha} = 7.94$$

and

$$z = p/\alpha = 1.06.$$

8. Verify that the required phase margin of 55 degrees has been achieved. The transcript below shows that we achieved a phase margin of 77.5 degrees so our phase margin is acceptable.

$$\gg \ Gc = \text{tf}([1 \ 1.06],[1 \ 7.94])$$
Transfer function:
\[
s + 1.06 \\
--------- \\
s + 7.94
\]

>> G=tf(16,[1 5 4 0])

Transfer function:
\[
16 \\
---------- \\
s^3 + 5s^2 + 4s
\]

>> [Gm,Pm,wcg,wcp]=margin(series(Gc,G));
 >> Pm

Pm =

77.4550

9. Plot the step response of the resulting closed-loop system to determine whether it meets the design requirements, then increase the compensator gain until it does. Increasing the gain by a factor of 3 to yielded a closed-loop system with 9.3% overshoot and \(T_s = 2.85 \) seconds, thereby meeting the design requirements. The step responses obtained in this step are shown in Figure 4.

The final compensator design is

\[
G_c = \frac{48(s + 1.06)}{(s + 7.94)}
\]

for the plant

\[
G(s) = \frac{1}{s(s + 1)(s + 4)}
\]

It should be noted that this design method does not produce an optimal compensator design. It simply produces a design that meets the design specifications.

AP10.2 For the same system, we are asked to design a lag network to achieve percent overshoot less than 13% and steady-state error for a unit ramp input less than 0.125. We are then asked to find the percent overshoot and 2% settling time for the resulting closed-loop system.

Solution: Note that this is solution is a way to solve the problem. It is not the only way to approach the problem.

The lag network will have transfer function

\[
G_c(s) = \frac{K(s + z)}{(s + p)}
\]
so the closed-loop transfer function will be

\[T(s) = \frac{K(s + z)}{s^4 + (5 + p)s^3 + (4 + 5p)s^2 + (4p + K)s + Kz} \]

so the error will be

\[R(s) - Y(s) = R(s)[1 - T(s)] = R(s) \frac{s^4 + (5 + p)s^3 + (4 + 5p)s^2 + 4ps}{s^4 + (5 + p)s^3 + (4 + 5p)s^2 + (4p + K)s + Kz} \]

so the steady state error for a unit ramp \(R(s) = 1/s^2 \) is

\[e_{ss} = \lim s \left(\frac{1}{s^2} \right) \frac{s^4 + (5 + p)s^3 + (4 + 5p)s^2 + 4ps}{s^4 + (5 + p)s^3 + (4 + 5p)s^2 + (4p + K)s + Kz} = \frac{4p}{Kz} \]

If we choose \(K = 2.25 \) as in AP10.1, we then have the condition

\[\frac{4p}{2.25z} = \frac{1.78p}{z} < 0.125 \]
so we now have the constraint \(p < 0.07z \). We determine the value of \(z \) and \(p \) in the following steps.

1. We locate the frequency on the Bode plot where the phase margin is \(60 = 55 + 5 \) degrees as specified in the instructions on page 581 of the text. This frequency is \(0.438 \) rad/s.

2. We place the \(z \) at \(0.438/10 = 0.0438 \) rad/s (one decade below the frequency found in the previous step), again as instructed on page 581.

3. We set \(p = 0.06(0.438) = 0.026 < 0.07(0.438) \).

4. Using MATLAB and finding the step response of the closed-loop system with this compensator to be inadequate (too slow), we reduce \(z \) until the behavior is satisfactory. For \(z = 0.01 \) we obtain 12.26\% overshoot and error for a unit ramp input

\[e_{ss} = 4p/Kz = 1.0667 < 0.125. \]

AP10.3 For the same system, we are asked to design a PI controller so that the closed-loop system has percent overshoot less than 13\% and steady state error to a unit ramp of less than 0.125.

Solution: The transfer function for the PI controller is

\[G_c(s) = \frac{KPs + K_I}{s}. \]

With this controller, the closed loop transfer function will be

\[T(s) = \frac{KPs + K_I}{s^4 + 5s^3 + 4s^2 + KPs + K_I} \]

and the error will be

\[R(s) - Y(s) = R(s)[1 - T(s)] = R(s)\frac{s^4 + 5s^3 + 4s^2}{s^4 + 5s^3 + 4s^2 + KPs + K_I} \]

so the steady state error for a unit ramp \(R(s) = 1/s^2 \) is

\[e_{ss} = \lim s \left(\frac{1}{s^2} \right) \frac{s^4 + 5s^3 + 4s^2}{s^4 + 5s^3 + 4s^2 + KPs + K_I} = 0 \]

so any \(K_P \) and \(K_I \) that result in a stable system will satisfy the steady state error criterion.

From AP10.1 we know that a gain of 2.25 will result in a closed-loop system with less than 13\% overshoot so we start with \(K_P = 2.25 \) and adjust \(K_I \) to obtain satisfactory behavior. By generating the step response in MATLAB for the closed-loop system with different values of \(K_I \) I found that \(K_I = 1 \) lead to oscillations of increasing amplitude in the step response showing that this was too high a gain. I then tried \(K_I = 0.1 \) and found that this still did not achieve acceptable system behavior. Finally I tried \(K_I = 0.01 \), which achieved percent overshoot of 12.3\%. Here’s the MATLAB transcript.
>> sys = tf(1,[1 5 4 0])

Transfer function:
 1

 s^3 + 5 s^2 + 4 s

>> csys = tf([2.25 1],[1 0])

Transfer function:
 2.25 s + 1

 s

>> clsys = feedback(series(csys,sys),1)

Transfer function:
 2.25 s + 1

 s^4 + 5 s^3 + 4 s^2 + 2.25 s + 1

>> y=step(clsys,t);plot(t,y);grid
>> csys = tf([2.25 .1],[1 0])

Transfer function:
 2.25 s + 0.1

 s

>> clsys = feedback(series(csys,sys),1)

Transfer function:
 2.25 s + 0.1

 s^4 + 5 s^3 + 4 s^2 + 2.25 s + 0.1

>> y=step(clsys,t);plot(t,y);grid
>> csys = tf([2.25 .01],[1 0])

Transfer function:
 2.25 s + 0.01

 s

>> clsys = feedback(series(csys,sys),1)

Transfer function:
 2.25 s + 0.01

 s^4 + 5 s^3 + 4 s^2 + 2.25 s + 0.1

>> y=step(clsys,t);plot(t,y);grid
Transfer function:
\[
\frac{2.25 s + 0.01}{s^4 + 5 s^3 + 4 s^2 + 2.25 s + 0.01}
\]

```matlab
>> y=step(clsys,t);plot(t,y);grid
>> max(y)
```
```
ans =
    1.1236
```